Mobile Passive Optical Imager for Remote Gas Detection, Phase I

Completed Technology Project (2013 - 2013)

Project Introduction

Tunable filters based on electro-optic effect have shown great potential in detecting gas concentration through obtaining its absorption spectrum. In filter-based technologies, the x-y 2D imaging is usually taken at once, while the wavelength dimension is performed by tunable filters that are mounted in front of a monochrome IR camera. Several types of tunable filters are currently available, including mechanically tuned Fabry-Perot etalon (FP filter), liquid-crystal Lyot-Ohman filters and acousto-optic filters. However, these EO tuning technologies have some shortages, such as slow tuning speed, bulky design, limited working band and small aperture. Boston Applied Technologies, Inc. (BATi) proposes a unique remote sensing system which is based on a tunable filter with under millisecond tuning time for high speed detection of gas concentration. The core part, tunable filter, of the proposed system is made of patented OptoCeramic® material. The system features high speed, wide spectral range from visible to MWIR, low cost, light weight, big aperture, and robust.

Primary U.S. Work Locations and Key Partners

Mobile Passive Optical Imager for Remote Gas Detection

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Mobile Passive Optical Imager for Remote Gas Detection, Phase I

Completed Technology Project (2013 - 2013)

Organizations Performing Work	Role	Туре	Location
Boston Applied Technologies, Inc.	Lead Organization	Industry Minority- Owned Business	Woburn, Massachusetts
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations		
Maryland	Massachusetts	

Project Transitions

May 2013: Project Start

November 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138315)

Images

Project Image

Mobile Passive Optical Imager for Remote Gas Detection (https://techport.nasa.gov/image/127166)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Boston Applied Technologies, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Qizhi Zhang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Mobile Passive Optical Imager for Remote Gas Detection, Phase I

Completed Technology Project (2013 - 2013)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 TX08 1 Percents Co.
 - ☐ TX08.1 Remote Sensing Instruments/Sensors
 - └─ TX08.1.3 Optical Components

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

